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Abstract

Anthropogenic nutrient loading from land use, especially agriculture, is a major threat to
waterbodies worldwide. Efforts to govern nutrient pollution are increasingly based on simu-
lation modeling for research, evaluation, and regulation. This study develops a novel approach
to simulate nutrient losses from agriculture applied to the Lake Champlain basin in the US
state of Vermont. The Vermont Phosphorus-Index—a farm-based empirical model regularly
used for site evaluation—is scaled up to the basin level with high-resolution geographic data
and probabilistic estimation of unknown parameters and management practices. Results are
comparable with analyses using more data and computationally intensive tools. Important
insights into basin-wide management include: (1) nutrient-management planning can signifi-
cantly reduce P losses in a livestock-agriculture-dominated watershed by re-distributing
manure applications from areas of high loss to low loss; (2) hotspot identification from geo-
graphic data alone may be deeply complicated by high underlying heterogeneity of soil phos-
phorus; and (3) probabilistic modeling using simple, field-scale models is a potentially useful
complement to complex watershed process models. Findings suggest that currently available
best-management practices will likely be insufficient to reach reduction targets in the most
impaired sub-watersheds. Reductions of agricultural land use and herd size, particularly in
intensive dairy operations, may be necessary.

Introduction

Agricultural runoff is the leading cause of nutrient pollution in waterways worldwide (Dupas
et al., 2015). Many freshwater bodies are phosphorus-limited, thus nutrient enrichment can
profoundly impact their ecology and function (Sterner, 2008). Globally, the scale of phos-
phorus loss into waterways is several times higher than the geologic background rate, with
potentially irreversible impacts on freshwater ecology (Carpenter and Bennett, 2011). The
resulting eutrophication also can harm the health, well-being, and economic vitality of com-
munities near affected waterbodies. Driven by excess phosphorus levels, cyanobacteria blooms
result in waters with low levels of oxygen, higher turbidity, and dangerous concentrations of
cyanotoxins. These conditions can drive die-offs in aquatic animals and losses of native
plant species, increase the costs of treating water for human consumption, and threaten the
scenic and recreational and scenic values of freshwater lakes (Lewis, Wurtsbaugh, and Paerl,
2011). Exposure to toxins from blue-green algae also may be linked to long-term chronic
human health problems (Carmichael, 2001; Torbick et al., 2018) and deaths of bathing pets
(Hauser, 2019).

In the state of Vermont, several waterbodies have been declared ‘impaired’ by phosphorus
levels, including Lake Champlain, the sixth largest freshwater lake in the USA. While phos-
phorus runoff is driven by increases in developed land and impervious surfaces, agriculture
remains the largest source of phosphorus into the lake, especially in the most impaired
sub-watersheds (US EPA, 2016). Water-quality impairment of Lake Champlain has led to
numerous negative impacts, including loss of tourism revenues, decreased home prices, and
reduction in fish populations (Gourevitch et al., 2021; Voigt, Lees, and Erickson, 2015),
as well as less-tangible losses to human well-being (Lake Champlain Management
Conference, 2010).

Nutrient runoff from agriculture is considered ‘non-point’ source pollution, occurring at
many locations distributed across the landscape. This makes direct measurement of waterbody
loading infeasible. Instead of direct measurement, computer modeling plays a central role in
assessment and governance (Lane et al., 2006; Wang et al., 2020). While the final levels of pol-
lution or water-quality impairment may be directly measured by water-quality monitoring
programs, assigning the responsibility for this pollution to different land uses is accomplished
through complex, data-intensive watershed models, especially the soil and water assessment
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tool (SWAT) (Arnold et al., 2012). These same tools are utilized
for assessing different management scenarios and determining
what sectors can make the most cost-effective reductions.

In contrast, field-scale and validated models are used to assess
on-farm phosphorus loading and management options. This
includes phosphorus-indexes, or P-indexes, which are spreadsheet
models that can be completed by farmers, extension agents, or
consultants. Models such as the P-indexes have become integral
parts of both voluntary and mandated nutrient management
plans across the USA (Mallarino et al., 2002; Sharpley et al.,
2017). In Vermont, the Vermont P-index is a required component
of nutrient management plans, which are mandated since 2016
for all farms with more than 50 acres or more than 50 dairy
cows (Agency of Agriculture, 2018; USDA NRCS, 2021).

In this paper, we develop a ‘bottom-up’ method for estimating
basin-wide phosphorus losses by estimated the P-index for indi-
vidual farm fields. We link the Vermont P-index with a high-
resolution dataset of individual farm fields in a four-county
Vermont portion of the Lake Champlain watershed. Being far
less computationally intensive than SWAT, it is easier to explore
a range of management scenarios and perform calculations on
extremely high-resolution land-cover data. Crop fields are ana-
lyzed as complete units rather than pixels, closely matching the
units on which farm management decisions are made. Privacy
limitations preclude access to the state’s legally mandated
P-index data, so this is a ‘next best’ approach to simulate phos-
phorus reduction scenarios at farm-scale, aggregate the results
through policy and management scenario analysis, and identify
potential phosphorus hotspots in impaired sub-watersheds
where farm retirement may be the only option to achieve reduc-
tion targets.

Background

Modeling agricultural nutrient losses

Computer modeling is a crucial tool for governing the environ-
ment, including agricultural runoff. Models are used for many
purposes relating to agricultural pollution to waterbodies, includ-
ing assessing watershed-scale impact, strategic and tactical plan-
ning, farm-scale nutrient planning, payments for conservation
programs, cap-and-trade design for nutrient management, and
even as evidence in lawsuits (Radcliffe, Freer, and Schoumans,
2009). The same model or set of models may be used to diagnose
a problem, then design and implement interventions and finally
to assess their effectiveness.

Many types of models are used to estimate pollution runoff,
ranging from mechanistic models built-up from laws of physics
and chemistry to empirical models which utilize coefficients
developed from experiments, and mixed methods in between.
Models are developed based on different time and spatial scales
—from hourly or daily time-steps to annual averages—and from
the plot scale to large watersheds. Each approach has distinct
strengths and weaknesses, with trade-offs evaluated by the ultim-
ate end use.

For example, dynamic models with large mechanistic compo-
nents and short time-steps are common for creating regulations
and supporting research (Radcliffe, Freer, and Schoumans,
2009). Because these models directly encode a theoretical
model, they are useful for advancing scientific understanding.
Dynamic models are also generally robust enough to be used
for basin-scale environmental assessments. More simplified

empirical models, on the other hand, are more user-friendly
and have smaller data requirements. The design of these models
is also more flexible, where new experimental results can be
used to alter key coefficients even when their theoretical basis is
unclear. These properties are beneficial for on-farm nutrient man-
agement planning (NMP) and assessment of conservation initia-
tives (Radcliffe, Freer, and Schoumans, 2009; Sharpley et al., 2017).

Watershed-scale nutrient loading is usually investigated utiliz-
ing spatially explicit models that are mostly mechanistic. Most
popular is the SWAT. First released in 1994, SWAT has become
the tool of choice for modeling erosion, streamflow, and nutrient
loss from agriculturally dominated watersheds (Gassman et al.,
2007), accounting for nearly half of published catchment-scale
modeling research (Fu et al., 2019). SWAT is based on a daily
time-step and explicitly models the physical processes of plant
growth, nutrient uptake, and nutrient transport. By leaving several
important parameters to be fit to available watershed data, SWAT
can be calibrated to acceptable accuracy for any agriculturally
dominated basin.

Among empirical, field-based models, the P-index has become
the most popular approach for ‘site assessment’ to help farmers
and natural resource professionals determine which farm fields
require mitigation measures (Lemunyon and Gilbert, 1993;
Sharpley et al., 1994). P-indices are built for utilization in
nutrient-management planning using basic information about
the physical characteristics and management of farm fields. By
utilizing data and calculation tools (such as worksheets and
spreadsheets) that farmers and extension agents can easily acquire
and use, the P-index method is particularly suited for assessing
immediate field-level management actions.

While dynamic models can be calibrated to many different
watersheds, the design of P-indices has become increasingly
detailed and locally specific. The first P-index was designed for
the whole USA, and took an additive approach, using the
weighted sum of scores on several different P-loss risk factors.
More recent P-indices divide phosphorus loss risk factors into
two categories: (1) transport factors, such as erosion and runoff;
and (2) source factors, including soil test phosphorus and the
quantity and method of recent manure or fertilizer applications.
Many recent P-indices also multiply source risks by transport
risks (Gburek et al., 2000), providing a much more sensible
view of nutrient loss; a field that has no phosphorus source will
have no phosphorus loss, no matter how high its transport poten-
tial, and vice versa.

Some newer P-indices separate source and transport factors
specific to different loss pathways, utilizing regionally specific
empirical relationships between management practices, environ-
mental characteristics, and phosphorus loss. For instance, the
Vermont P-index multiplies source and transport factors specific
to five different pathways: particulate P from soil and manure, and
dissolved P from soil, manure, and fertilizer. Because these
P-indices are based on experimental and observational data,
rather than explicit simulation of the processes governing phos-
phorus losses, these models are limited to a very small geographic
scope and well-researched farming techniques, but can be just as
accurate within these limitations as difficult to calibrate,
data-intensive watershed models (Sharpley et al., 2017).

An important difference between these two approaches is data
needs and thus user preferences. SWAT requires data for many
different geophysical features and processes, including elevation,
land cover, plant growth patterns, tillage implements, and daily
data for rainfall, solar radiation, wind speed, and relative
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humidity. Additional streamflow and water-quality data are
needed for manual or automatic calibration of SWAT (Arnold
et al., 2012). The P-index, on the other hand, requires detailed
information on management decisions and soil characteristics
for individual fields. While a farmer might need some help
from an extension agent or technical advisor for determining
soil erosion or initial determination of soil characteristics, almost
all information needed to run the model is easily accessible to
farmers.

Our approach is therefore an inversion of the normal
approach. We utilize a tool built for individualized site assessment
to examine watershed-scale nutrient-loading. By aggregating
simulated results on individual fields up to the watershed scale,
we can approach aspects of farm-management that are not avail-
able in spatial data as heterogenous and probabilistic, rather than
assuming uniformity. For instance, rather than assuming that till-
age practices are uniform according to some set of conditions, we
can specify tillage and any other farm practices according to a set
of conditional probability distributions. This gives a more detailed
perspective on uncertainty at the field level, and also may give a
more accurate assessment of the average value of P losses; average
P loss for a field may not be the same as P loss under its average
management parameters. This approach also connects the
watershed-scale view of the problem to the farm manager’s per-
spective and direct experience.

Furthermore, our approach has other advantages which may
make it useful for analysis of agricultural water-quality policy.
For example, a bottom-up approach may be better adapted to

handle the considerable uncertainty inherent in these problems.
Being far less computationally intensive than SWAT, it is easier
to explore a wide range of management scenarios and perform
calculations on extremely high-resolution land-cover data through
a probabilistic approach. We are then able to explore unseen but
potentially highly influential variability in factors such as pattern
tile drainage and soil test phosphorus. In addition, the inputs of
the P-index are already required elements of legally mandated
nutrient management plans, potentially allowing for validation
through public records requests. The ad-hoc, empirical nature
of the model also makes it simple to adjust its coefficients in
response to new data in a constantly evolving landscape of
research on water-quality best-management practices (BMPs).

Study site

This study was conducted in the Vermont portion of the Lake
Champlain basin in the northeastern USA. Lake Champlain is
the sixth largest freshwater body in the USA, draining a basin
of 21,326 km2 in the states of Vermont and New York, and the
Canadian province of Quebec (Fig. 1). Phosphorus-driven
eutrophication has been a major environmental concern in the
region since the 1970s. Programs targeting point-source pollution
from wastewater treatment facilities have been successful, redu-
cing phosphorus pollution by over 80%, but phosphorus concen-
trations in lake segments drained from Vermont land have
remained steady or increased (Smeltzer, Shambaugh, and
Stangel, 2012). In 2002, the Vermont Department of

Figure 1. Study area.

Renewable Agriculture and Food Systems 3

https://doi.org/10.1017/S1742170523000327 Published online by Cambridge University Press

https://doi.org/10.1017/S1742170523000327


Environmental Conservation developed a total maximum daily
load (TMDL) plan for reducing phosphorus loading. However,
after little state progress and following litigation, the US
Environmental Protection Agency (EPA) established newer,
more ambitious targets in 2016.

The EPA’s revised TMDL calls for approximately two-thirds of
Vermont’s load reductions to come from agriculture, though they
estimate agriculture as only producing 41% of phosphorus load-
ing (US EPA, 2016). In response to the litigation, and anticipating
the revised TMDL, the Vermont State Legislature passed the
Clean Water Act of 2015 (Act 64) Act 64 directed the Vermont
Agency of Food Agriculture and Markets to ‘Required
Agricultural Practices’ regulation. This regulation came into
force in 2018 and aimed at minimum standards for protecting
water quality including buffer zones near surface waters.
Additionally, all but the smallest farms are required to develop
nutrient management plans for all their fields, including using
the Vermont P-index and altering management if fields scored
too high.

Vermont’s agricultural sector is dominated by dairy farming,
and the large volumes of manure and imported feed inherent to
this sector make reducing phosphorus loading exceptionally diffi-
cult (Wironen, Bennett, and Erickson, 2018). Previous studies
have investigated the various challenges of meeting TMDL targets
for phosphorus, including modeling studies conducted for devel-
opment of government policy and for more pure research goals
(Gaddis and Voinov, 2010; Ghebremichael, Veith, and Watzin,
2010; Meals and Budd, 1998; Medalie, Hirsch, and Archfield,
2012; Mendelsohn, Swanson, and Isaji, 1997; Mendelsohn and
Rines, 1995; Seltzer and Wang, 2004; Wironen, Bennett, and
Erickson, 2018). Most importantly, the TMDL and reduction allo-
cations for Vermont were developed using the BATHTUB model
for within-lake phosphorus dynamics and SWAT for phosphorus
losses from land-use, both in the current situation and reduction
scenarios. A ‘Scenario Analysis Tool’ was also developed using
SWAT (Tetra Tech Inc., 2015) and a literature review to project
possible reductions from BMPs in agriculture, forestry, and devel-
oped land. These estimates were used to assign load reduction tar-
gets to different pollution sources and are utilized in
policymaking and assessment by the VT state government.

On the research side, basin-scale studies include Wironen,
Bennett, and Erickson (2018), a University of Vermont study
that examined the phosphorus mass-balance of the basin as a
whole, finding that imports of new phosphorus in feed and fertil-
izer for dairy farms exceed exports of phosphorus in milk by over
4 to 1. These results suggest that field-scale mitigation measures
cannot meet phosphorus reduction targets on their own.
Researchers have been particularly interested in the dynamics of
the Missisquoi Bay watershed, the most impaired lake segment
(US EPA, 2016). Ghebremichael, Veith, and Watzin (2010) uti-
lized SWAT to identify critical source areas in the Rock River sub-

watershed, showing that phosphorus loading is highly spatially
concentrated. The majority of the load (58%) from the Rock
River is generated by fields growing corn (Zea mays L.), despite
these fields covering only 17% of watershed area. Winchell et al.
(2011), also using SWAT, similarly found that in the Missisquoi
watershed, cropland growing corn accounted for only 10% of
the land area but about 35% of the phosphorus load. In contrast
to Ghbremichael et al., they found substantial hotspot impacts
within land-use categories. For example, Winchell et al. found
greater than a tenfold increase in phosphorus losses from poorly
drained compared to well-drained corn fields, and a fourfold dif-
ference between the flattest and steepest corn fields. Similarly,
Gaddis and Voinov (2010) built a customized hydrologic model
of phosphorus loss in the St. Albans Bay watershed, another sig-
nificantly impaired lake segment in the northeast corner of the
basin. Like other analyses, they estimate that cropland growing
corn accounted for a disproportionate quantity of phosphorus
loading, with 46% of total phosphorus load estimated to come
from only 22% of the land area.

Methods

In this study, we conduct simulations of phosphorus loss from
farm fields from four counties within the Lake Champlain
basin. These counties account for over 68% of the agricultural
land in the Vermont portion of the Lake Champlain basin and
over 99% of agricultural land in these four counties are within
the basin. Both empirical and simulated variables are used to
populate the Vermont P-index, a field-scale model of phosphorus
loss used for NMP in Vermont (Jokela, Tilley, and Faulkner,
2020). The Vermont P-index is publicly available as a spreadsheet
application, which we converted to a script in the Python pro-
gramming language (Version 3.8). The Vermont P-index returns
a quantitative score with a qualitative interpretation. For instance,
a score below 20 is ‘Very Low’ while above 100 is ‘Very High.’ The
results can be interpreted as total phosphorus loss, adjusted for
availability to cyanobacteria blooms, by dividing by 80 to yield
lbs P/acre/year (or dividing by 89.8 to yield kg P/ha/year).
Internal calculations of the P-index model can likewise be used
to estimate total P losses into waterways.

This modeling approach has several components, outlined in
Figure 2. Polygons representing the spatial extent of crop fields
in the Lake Champlain basin were developed by the University
of Vermont Spatial Analysis Laboratory. These land areas were
then linked with elevation models, soil type, and waterway extent
from publicly available geodata. Management and other non-
observable parameters were modeled probabilistically, detailed
in Tables 1 and 2. A description of key modeled parameters is
provided below, with more detail in Appendix A.

Figure 2. Tasks performed for this study.
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Table 1. Sources for parameters estimated from available data for the P-index model

Parameter Source Notes

Crop type GIS dataset developed by UVM Spatial
Analysis Lab

Crop rotation GIS dataset developed by UVM Spatial
Analysis Lab

Fields with excessive erosion rates are re-assigned to rotations with less corn

Point in crop rotation
(previous crops)

Randomly assigns a year in a crop rotation
cycle based on current crop

For example, for a field in 4-corn/4-hay rotation, if the field is in corn from the
GIS analysis the field is randomly assigned to be in year 1, 2, 3, or 4

Soil type Shapefile Geologic soils polygon from NRCS (1)

Soil hydro group Shapefile Geologic soils polygon from NRCS (1)

Soil K factor Derived from soil-textured table OMAFARA fact sheet, Universal Soil Loss Equation (2)

Location, elevation From GIS field delineations UVM Spatial Analysis Lab

Distance to water Derived from geospatial data

Manure spreading
setback

Set at 10 and increased to 30 for farms
that have high P-index

Erosion rate Modeled using spatial data and simulated
parameters

Sediment trap
structures

Not included

Rainfall (erosivity factor) EPA low erosivity waiver erosion factor
calculator

Application program interface (US EPA, n.d.)

Notes:
1. Retrieved from https://geodata.vermont.gov/.
2. See: http://www.omafra.gov.on.ca/english/engineer/facts/12-051.htm.

Table 2. Description of simulated parameters for the P-index model

Parameters Description Technical notes

Soil test P Soil test phosphorus, modified Morgans
(available P)

All fields receive the same values 3 times across the 252 simulation runs.
Lognormal (s = 1.18, scale = 2.8) + 0.5

Soil test aluminum Mehlich-3 aluminum Gamma (a = 1.25, scale = 50) + 2

Soil test data (general) Based on dataset of all soil tests performed
by UVM soil lab

Modeled the same for all scenarios.
Data from fields >1 acre, growing field crops or hay and in study area

No. of manure
applications

How many separate applications of manure
are made to the crop field?

Dependent crop type: set to 0 if soil test P is over 15, 1 for corn, multiple for
hay

Pattern tile drainage Does the field have pattern tile drainage? (Y/
N)

Modeled as dependent on soil hydrologic class and crop type

Cover crop Does the land have a winter cover crop
planting on it in the year simulated? (Y/N)

None for fallow and hay
Bernoulli variable for corn and ‘other’

Cover fraction Fraction of soil covered by plant material in
the non-growing season.

<0.2 if crop is corn and no cover crop.
Else: ⩾0.2

Tillage method What method of tillage is used? ‘No till’ for continuous or continuing hay and fallow. Otherwise randomly
drawn from proportions of no till, disk, chisel, and moldboard
Proportions differ between scenarios

Time to manure
incorporation

How long does manure remain on soil
surface (days?)

0 if manure is injected, otherwise modeled as a Poisson variable, k = 7

Manure incorporation
method

How is manure incorporated into soil, if at
all?

Based on tillage method and crop

Manure date What time of year is manure applied?
Spring, summer or fall?

Corn randomly drawn from spring or fall, and others randomly drawn from
spring, summer or fall

Irrigation Excluded Irrigation of field crops is uncommon in the study area.

Phosphorus fertilizer
application rate

Excluded P fertilizer comprises a minimal portion of the region’s P budget (Wironen,
Bennett, and Erickson, 2018). Excluding this underestimates benefits of NMP
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Key modeled parameters

Soil erosion
The Vermont P-index requires a soil erosion rate as a key input.
Our model calculates erosion through an implementation of the
Universal Soil Loss Equation. The topographic (LS) factor is cal-
culated using raster digital elevation models from the Vermont
Center for Geographic information, using flow-routing algo-
rithms from the Whitebox Tools open-source geoprocessing
library (Lindsay, 2016), and formulas described by Desmet and
Govers (1996). The soil erodibility (K) factor was extracted
from the USGS soil map, and a grid of rainfall erosivity (R) factor
values was built from data from the EPA Low Erosivity Waiver
Erosion Factor Calculator application program interface (US
EPA, n.d.). These data were averaged for each delineated crop
field to estimate potential erosion by field. This ‘RKLS’ factor
for crop fields is held constant across all management scenarios,
as it represents ‘potential erosion,’ i.e., soil loss when the field is
left completely bare. A lookup table was built for crops, crop
sequence, and tillage type to extract crop cover (C) and practice
factors (P), which allows erosion to be calculated for each simu-
lated crop sequence and tillage type.

Crop rotations
Expected crop rotations were provided along with the field shape
delineations. When we compared these crop rotations with total
crop acreage for corn and hay within the study area (NASS,
2021), we found that the provided crop rotations implied a greater
ratio of land growing corn to land growing hay in any given year.
To correct for this imbalance, corn–hay rotations where corn was
represented in more than half of years were altered to add 1 year
of hay and subtract one of corn.

Manure applications
Total manure applications were first calculated by county using
livestock numbers from the USDA Census of Agriculture
(NASS, 2021). Total P applied in manure lbs/year for each county
was calculated as:

manure applied = ndairy cows + nother cattle
2

( )
× 70 (1)

where n represents the number of each animal. Farmers were
assumed to spread manure on hay fields at 80% the regular rate
received by corn fields. Each scenario in each county included a
series of tuning runs to calibrate the manure application rate
such that the total manure P applied matched the total manure
P available for that county. Tuning was required for scenarios
including NMP, where manure applications are revised if P
Index values are too high.

Soil test phosphorus
Values for soil test P were simulated based on data from 6293 soil
test samples collected in western Vermont farm fields between
2013 and 2020 and analyzed by the University of Vermont
Agricultural and Environmental Test Lab. While zip codes for
each mailed sample were available, the data were too sparse to
draw conclusions about the spatial distribution of soil test
P. Instead, we combined all data and experimented with different
distributions. A lognormal distribution was chosen as fitting the
underlying data best. See Appendix B for more details.

Soil test P values are extremely influential to P losses at the
field scale and are not linked to the spatial data used to run the
model, calling for careful treatment in the model. Our process
for simulating soil test P was as follows. First, a distribution
was simulated from the empirical soil test P data. From this dis-
tribution, we drew 10,000 random values, and binned these
values into integer-based categories. We then took the mean
of each category yielding 84 unique soil test P values. All crop
fields, in all scenarios, are simulated with each of these values
the same number of times. This allows for analysis of ‘hotspots’
and changes across scenarios to be conducted based on averages
for both fields and soil test P results. Average values of results
for each crop field are calculated as the average across values
of soil test P used, weighted by the number of observations in
that bin.

Running the model

For farming practice parameters, several scenarios are defined.
These represent different proportions of crop management prac-
tices dependent on crops and different field characteristics. For
each scenario, an array of values is drawn for each simulated vari-
able equaling the total number of fields. Then for each of 252
iterations of the scenario, these values are randomly shuffled
and the values applied to fields in that order. In total, 252 itera-
tions allow each field to be simulated three different times with
each of 84 soil test phosphorus values.

A few scenarios were investigated, including: (1) base scen-
ario, representing practices prevalent in 2015; (2) base + NMP
scenario, with the same practices but where farmers eliminate
or reduce P applications if the calculated P index exceeds certain
thresholds; and (3) BMP scenario, representing near-universal,
but imperfect uptake of BMPs. All practice scenarios were also
run with an alternative set of field shapes where all areas of
each field which were within 12.2 m of a watercourse were con-
verted to vegetated buffers. Lastly, all field shapes are simulated
under the conditions where they were left fallow and allowed to
return to natural vegetation to investigate the impacts of targeted
land retirement.

More details on the implementation of the model, including
instructions for accessing the source code and description of vari-
ables within each scenario, are available in Appendix A.

Results

Impacts across different scenarios

Figure 3 summarizes the simulated phosphorus reductions
achieved from different changes in farming practices. The BMP
scenario, when combined with nutrient management, exceeds
TMDL targets for P reductions in four out of eight lake segments
examined, exceeding these targets by a wide margin in Isle La
Motte and Shelburne Bay. Extending buffers up to 40 feet away
from all surface water yields a 10% reduction in P losses, and
together with BMPs and NMP brings the Main Lake and Otter
Creek segments into compliance with the targets set for agricul-
ture. In the Missisquoi Bay watershed, less than two-thirds of tar-
geted reductions are achieved in the maximum scenario without
land retirement, and only 75% are achieved for Lower Lake A
(Table 3).

These results indicate that achieving targeted reductions in P
loss from farmland will almost certainly involve either a radical
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transformation of farming practices or a substantial shrinking of
agriculture, both in terms of animal numbers and land footprint.
While an empirical model such as the Vermont P-index is very
poorly equipped to simulate novel and radical changes to farming
practices, the results of our simulations can help to understand
efficient targeting for land retirement.

Of the examined components, NMP has the largest spatial
variability. NMP reduces predicted P loading by less than 15%
in the Isle La Motte Lake segment, and over 26% in the
Missisquoi Bay segment. Higher reductions are seen in watersheds
that are partially or totally in Franklin county, which has the high-
est livestock densities in the state. These reductions primarily
come from reductions in manure losses from corn fields with
high-soil erosion. Reductions from the suite of BMPs are fairly
uniform, ranging from 23% in the Missisquoi Bay watershed to
nearly 32% in Isle La Motte. Implementing buffers show modest
variation in improvements, with no clear pattern in the variation,
as shown in Figure 3.

Mode and quantity of loss

Fields growing corn had substantially higher and more variable P
loss than fields in hay in the base scenario. Field-level average
P-index values were 77 for corn vs 32 for hay, with 90% intervals
of 19–158 and 8–71, respectively (Fig. 4). Losses from manure,
however, were somewhat higher for hay (corn P sub-index 16,
hay P sub-index of 19). This likely reflects two factors. First,
most manure spread on corn fields is incorporated through tillage
in the base scenario, while nearly all manure applied to hay fields
is surface applied and thus more vulnerable to runoff (despite
having far more vegetative cover which can catch that runoff).
The incorporated manure P is less-likely to be lost in run-off
and more of it ends up in the soil P pool—where it counts as
soil loss if lost to subsequent erosion. Additionally, the NMP
scenario causes some corn fields to have lower average manure
applications than hay fields. Corn fields with medium-to-high
potential erosion will sometimes generate a P-index that requires

Figure 3. Total proportion of reductions in P loss from Vermont watersheds under different scenarios.
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that no manure be applied to the field. Figures 5 and 6 show the
relationship between losses from soil and losses from manure for
crop fields, with Figure 5 showing results under the baseline scen-
ario, and Figure 6 showing results for NMP and BMPs. Note that
NMP allocates manure away from fields highly vulnerable to P
loss, creating an inverse relationship between manure P losses
and soil P losses in corn fields in the NMP + BMPs scenario.

Spatial vs soil test targeting

Our results suggest that some watersheds, including the
Missisquoi Bay watershed, cannot meet phosphorus reduction
targets through agricultural management changes alone.
Therefore, it may be necessary to reduce the footprint of agricul-
ture or reduce the amount of corn grown within these watersheds.
If measures such as land retirement or converting to continuous
hay are undertaken, choosing the right fields to target could
yield substantial gains in efficiency. Risk of P loss from a field
is a combination of innate site characteristics and impacts
of past and current management. Innate site characteristics such
as soil type, proximity to water, and rainfall erosivity are

well-measured and do not need to be simulated within the
model. Soil test P, however, is highly right-skewed, apparently log-
normally distributed. Detailed spatial data is not available for soil
test P.

Figure 7 compares average modeled reductions from field
retirement for results binned by location vs results binned by
soil test phosphorus for all fields in the sample. The blue distribu-
tion represents calculations of mean P-indices conditional on
each value of soil test phosphorus, averaged across all fields grow-
ing the crop. The red distribution represents calculations of the
mean conditional on each field, averaged across all values of
soil test phosphorus. Both soil test P data and field geographic
data are available, but data linking the two are not.

As Figure 7 illustrates, a very small number of soil test P values
create extreme hotspots, but the distribution of average P-index
scores is highly compressed. This is due to the log-normal distri-
bution of soil test P values (see Appendix 2). Though the absolute
spread is wider, the distribution is more unequal for results
grouped by field delineation. The Gini coefficient for P-index
grouped by fields is 0.48, but only 0.41 for results grouped by
soil test P.

Table 3. Fractional phosphorus reductions by lake segment from various scenarios

Watershed

Scenarios

TMDL target

All

NMP BMPs Buffers Buffers + BMPs All TMDL target

Main lake 0.121 0.336 0.101 0.408 0.480 0.469 1.024

Shelburne Bay 0.148 0.303 0.073 0.379 0.471 0.200 2.354

Mallets Bay 0.229 0.257 0.098 0.343 0.494 0.286 1.726

Otter creek 0.173 0.312 0.071 0.372 0.481 0.469 1.025

Isle La Motte 0.177 0.321 0.109 0.406 0.512 0.200 2.558

Lower Lake A/Port Henry 0.159 0.311 0.064 0.368 0.468 0.629 0.744

MSB 0.266 0.234 0.088 0.304 0.489 0.828 0.591

St Albans Bay/NE Arm 0.249 0.267 0.041 0.314 0.485 0.26 1.865

Numbers in bold show where potential changes in agricultural management fail to reach the level set by the TMDL.

Figure 4. Histograms of field-average P-index values
by crop type.
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Factors determining P-index and P loss of fields

To determine sensitivity of the P-index to various simulated
factors, we performed a linear regression with field-level
fixed effects on all instances of any field growing corn in the
base model run. The results of this regression are given in
Table 4. Most of the variation between runs on the same

field can be explained by a few simulated variables, including
soil test P, cover cropping, tillage type, P added in manure,
and whether manure was injected (if the field was no-till).
Coefficients for tillage and no-till with manure injected are
interpreted relative to a base case of no-till with manure left
on the surface.

Figure 5. Relationship between losses from soil and losses from manure for all draws from all crop fields in the base scenario.

Figure 6. Relationship between losses from soil and
losses from manure for all draws from all crop fields
in the base + NMP scenario.
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Most importantly, doubling soil test P increases modeled P
loss by 21%. While this is somewhat inelastic, this also implies
that BMPs will not be able to overcome high legacy P, which
can result in soil test P levels an order of magnitude higher
than those found in a typical field. The model shows substantial
P reductions from combined manure-injection/no-till systems.

Recall that the P-index represents total P lost, with erosion
losses adjusted downward for P availability in surface waters.
All dissolved P and manure particulate P is fully available, while
some P in soil particulates is unavailable to algae. Because of
this, some variables reduce total P loss more than they reduce
the P-index because they primarily reduce P loss through erosion
of soil particles more than through other pathways. For instance,
tillage variables are presented relative to no-till with manure
surface-applied. More intensive tillage leads to more erosion,
but also more effective incorporation of manure, i.e., higher P
losses in soil and lower P losses from manure. The overall impact
on P loss from reducing tillage is large, but because the P-index

counts soil-bound P losses less, the impact on the P-index is
smaller.

Comparison with basin-wide SWAT modeling

The results for our base scenario are similar, but not fully congru-
ent with results from the SWAT modeling of the Lake Champlain
basin conducted for the EPA’s TMDL (US EPA, 2016).
Differences with the Lake Champlain TMDL are difficult to
fully compare since results are aggregated by lake segment (rather
than sub-watershed) and most Vermont-side lake segments
include areas outside the scope of our field-shapes dataset
(which only covers four counties in Vermont). Additionally, the
TMDL load allocations calculate P loading of the lake segments,
while the P-index only calculates P delivered to waterways.
Finally, base load calculations for the Lake Champlain TMDL
were conducted for 2001–2010, while our model utilizes data
on crop fields and practices for 2015.

However, comparison is possible for a few sub-watersheds or
combinations of sub-watersheds highlighted in Table 5. Our
source data estimate lower agricultural land use than the data
used for the TMDL. Changing agricultural land use in the region
only accounts for a small portion of this difference; the 2016
National Landcover Dataset shows only a small decrease in agri-
cultural land cover compared to the 2011 version used in the
TMDL analysis. On the other hand, agricultural land cover as
reported in the Census of Agriculture declined by about 10%
between 2012 and 2017 (NASS, 2021). Visual inspection of aerial
imagery in comparison with our field delineations and the NASS
land cover categorizations indicates that both datasets include
some false positives and some false negatives for agricultural
land cover.

Our base model estimates for P loss per hectare of farmland
are somewhat higher in aggregate to those in the TMDL, though
there are significant discrepancies between watersheds. This
shows that our base scenario, without NMP, is likely an over-
estimate of total P losses. This makes sense, given that NMP
was often practiced in Vermont even before regulatory changes
made it mandatory for most farms. This also underlines our

Figure 7. Distribution of P-index reductions from
retiring a field based only on soil test phosphorus
or based only on spatial characteristics.

Table 4. Linear regression coefficients for factors influencing field-level P-index
and total phosphorus lost for fields growing corn

Independent variables

Dependent variables

log (Total P lost) log (Total P-index)

log(Soil test P) 0.192 0.317

Tile drain 0.155 −0.013

Cover crop −0.366 −0.347

log(added P + 1) 0.007 0.207

Chisel tillage 0.899 0.241

Disk tillage 0.906 0.287

Moldboard tillage 1.126 0.36

No-till, manure injected −0.231 −0.855

r2 = 0.614 r2 = 0.697

Regression contains field-level fixed effects.
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finding that targeted reductions may be difficult to achieve in
some watersheds since our high reductions found from NMP
are likely overestimates.

Discussion

Our results confirm the observation that P loading reduction tar-
gets for some sub-watersheds of the Lake Champlain basin may
be difficult or impossible to achieve without a reduction in the
agricultural footprint and/or size of the Vermont dairy herd.
While maximum expected reductions in P loss are sufficient to
meet reduction targets in some lake segments, they come up far
short in others, especially Missisquoi Bay. Cattle numbers in the
four county study area have been declining in recent years, falling
by more than 14% between 2012 and 2017, accompanied by simi-
lar drops in cropland harvest for forage, and cropland harvest
overall (NASS, 2021). However, a more intentional approach to
herd size management may be warranted, particularly given a het-
erogeneous legacy of soil P accumulation.

Most previous spatial analyses of P loss on a watershed scale
assume that soil phosphorus is distributed homogenously across
the landscape. While this is an important simplifying assumption,
our results suggest that the heterogeneity of legacy soil test P is an
extremely influential factor in P loss from farm fields. Spatial ana-
lyses can easily detect ‘hotspots’ where soil type, rainfall, and
proximity to waterways increase the risk of P loss. Additionally,
we find that ‘invisible’ hotspots, caused by high legacy P in
soils, may be just as significant for targeting conservation
interventions.

Wironen, Bennett, and Erickson (2018) demonstrated large P
surpluses throughout the Lake Champlain basin, driven in more
recent years by imports of animal feed. Likewise, Ketterings,
Kahabka, and Reid (2005) showed that nearly half of farm fields
in New York have ‘high’ or ‘very-high’ soil phosphorus levels,
with dairy-producing areas having the highest levels. High-soil
P concentrations are generally caused by long-term repeated
application of manure at high rates. Manure application history
can be extremely variable between, and even within, fields due
to variability in animal stocking rates and ease of access to fields
for manure-spreading (Page et al., 2005). The soil test data used
show ∼90% of crop fields have soil test P levels at or below agro-
nomic optimum levels, while a small fraction have values that are
extremely excessive. Identification of sites of high legacy P may
play a crucial role in mitigation efforts.

For example, Winchell et al. (2011) used a SWAT model to
identify critical source areas for P loss in the Missisquoi Bay

sub-watershed. Their work showed that targeting BMPs to the
20% most vulnerable fields could reduce P loss by 50–198%
more than by applying these interventions randomly over the
same number of fields. Our results suggest that even larger effi-
ciency gains could be attained through such targeting. Their ana-
lysis with regard to ‘reduced manure P’ as a BMP may be an
especially large underestimate. We find a 14% decrease in P loss
from the ‘NMP’ scenario, which re-allocates manure P from fields
with high P-index to lower P-index, based on the Vermont
Required Agricultural Practices regulation.

Another issue deserving of more attention is the impact of pat-
tern tile drainage commonly utilized on poorly and somewhat-
poorly drained crop fields throughout the USA, including
Vermont. The impacts of pattern tile drainage on nutrient losses
are complex, not well-understood, and insufficiently handled by
current modeling tools (Radcliffe et al., 2015; Wang et al.,
2020). Pattern tile drainage reduces surface runoff and erosion,
and thus the quantities of P lost through these pathways.
However, tiles also create additional pathways for P loss through
sub-surface drainage. Models generally assume that these losses
are relatively small. For example, the Vermont P-index calculates
subsurface drainage loss as 20% of the quantity of surface loss to
the field edge. However, the literature is inconsistent with regard
to the overall impacts on P loss (King et al., 2015).

In addition, important interactions between management and
soil characteristics may complicate simplistic assessments. For
example, most tile-drained crop fields in the Champlain basin
are clay-textured and receive large applications of livestock
manure. High clay fractions can lead to soil macropores
(Beauchemin, Simard, and Cluis., 1998) which can serve as a dir-
ect path for manure-contaminated water into tile-drains, ditches,
and streams (Dean and Foran, 1992; King et al., 2015; Shipitalo
and Gibbs, 2000). While it was long assumed that most P loss
occurred through overland flow, some measurement studies
observe more than half of lost via sub-surface drainage (Smith
et al., 2015).

Further complicating modeling efforts, some farming practices
designed to attenuate P losses from erosion and surface runoff,
such as conservation tillage and manure injection, may cause
increases in P loss through subsurface drainage. Conservation till-
age facilitates the formation of soil macropores, while manure
injection places manure deeper into the soil profile. Within the
study area, White et al. (2021) found that minimum tillage,
cover crops, and manure injection on corn crops reduced P loss
in surface runoff by 78%, which compares to a ∼76% reduction
in total P loss predicted by the coefficients in Table 4. On the

Table 5. Comparison of study results with the SWAT model for the Lake Champlain TMDL

Agricultural land (hectares) Total P load (kg) Sediment load (tons)

Sub-watershed Study SWAT Study SWAT Study SWAT

Isle La Motte 2120 3003 3748 2893 3274 2524

Lower Lake A/Port Henry 7565 10,633 19,010 28,831 24,378 24,561

Little Otter creek 6833 8759 18,378 11,611 21,680 22,140

Lewis creek 3125 4414 7207 4884 7672 2827

Mallets Bay direct drainage 1137 1654 1968 1792 1850 33,934

La Platte river 3146 6088 6745 6795 8512 5715

Only the sub-watersheds that are entirely within the study area are shown.
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other hand, P leaching into lysimeters increased by 121%. If all P
leached below the root zone were conveyed into streams by pat-
tern tile drainage, then this combination of BMPs would increase
total P loss by 80%, rather than reducing it. Other watershed and
plot-scale studies also show that conservation agricultural prac-
tices on drained cropland may decrease surface loss but increase
sub-surface losses (Griffith et al., 2020; Jarvie et al., 2017; Smith
et al., 2015). This problem is also reflected in the TMDL BMP
scenario analysis tool developed using SWAT (Tetra Tech Inc.,
2015), which predicts a 48% reduction in P losses from the
BMPs used in that study.

In our study, the Vermont P-index predicts slightly lower
(∼−1%) total P-index values and slightly higher total P lost
(∼16%) from crop fields with tile drainage in the base case, all
else held equal. This increase reflects the balance of reduced ero-
sion and runoff from improved drainage, but that rainfall near tile
drain lines can directly convey particles into the drain lines. The
Vermont P-index currently estimates that this occurs over only
20% of the field. The current version of the Vermont P-index is
not capable of handling interactions between conservation agri-
culture practices and pattern tile drainage.

Conclusion

In this study, we scaled-up a field-level model to examine farm P
losses on a watershed scale. Results show that most sub-
watersheds in the Vermont side of the Lake Champlain basin
are unlikely to achieve their targeted reductions without reducing
livestock numbers and the extent of agricultural land, or utilizing
novel, yet-developed BMPs. We further show that spatial hetero-
geneity in soil legacy phosphorus may be an underexamined lever
for targeting interventions, and especially for targeting land retire-
ment or shifting to low-intensity cropping systems.

Simulating site-assessment tools on a large-spatial scale is, to
our knowledge, a novel approach to examining nutrient loss
from farmland at the basin scale. Because each regional P-index
is slightly different, our simulation code cannot be directly applied
in other places, but our general approach might be. Similarly, it
could be utilized for site assessment tools including models of
nitrogen loss and carbon sequestration on farmland.

Future research using this approach could be helpful for validat-
ing and/or improving site assessment tools. Furthermore, this work
could be cross-validated with NMP records which utilize these same
site assessment tools. Our framework could be helpful for estimating
total reductions and financial costs of performance-based programs
for reducing nutrient losses and for targeting interventions to
highest-impact locations. Lastly, it provides a flexible framework
for examining how large the impacts of proposed interventions
would need to be to make these interventions meaningful.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S1742170523000327.
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